ESTUDO DA TRAMA DEFORMACIONAL (EIXO C DE QUARTZO) DE MILONITOS DOS DOMÍNIOS RIO ALEGRE E JAURÚ, SW DO CRÁTON AMAZÔNICO (MT)

Harrizon Lima de Almeida¹

RESUMO – Este trabalho objetiva analisar a trama cristalográfica (eixo *c* de quartzo) relacionada com a história deformacional de tectonitos situados em duas zonas de cisalhamento do cráton Amazônico. A análise dos dados indica a ativação dos sistemas de deslizamentos basal $\langle a \rangle$ e prisma $\langle c \rangle$, os quais estão relacionados a baixa e alta temperatura de deformação, respectivamente. No primeiro caso, a geometria da deformação foi coaxial e no segundo não coaxial.

Palavras-chave: Cráton Amazônico, zonas de cisalhamento, eixo c de quartzo e história da deformação.

STUDY OF THE DEFORMATIONAL FABRIC (QUARTZ C AXIS) OF MYLONITES OF THE RIO ALEGRE AND JAURÚ DOMAINS, SW AMAZONIAN CRATON (MT)

ABSTRACT – This work aims at to analyze the crystallographic fabric (quartz *c* axis) related with the deformational history of tectonites located in two shear zones of the Amazonian craton. The analysis of the data indicates the activation of the basal $\langle a \rangle$ and prism $\langle c \rangle$ slip systems, which are related to the low and high deformation temperature, respectively. In the first case, the strain geometry was coaxial and in the second non coaxial.

Keywords: Amazonian craton, shear zones, quartz *c* axis and deformation history.

¹Professor Adjunto I, D.Sc, Unidade Acadêmica de Mineração e Geologia, CTRN/UFCG. E-mail: <u>harrizon@dmg.ufcg.edu.br</u>

INTRODUÇÃO

O SW do Cráton Amazônico sofreu uma evolução policíclica relacionada a sucessivas orogêneses do Paleo ao Neoproterozócico. Nesse segmento do cráton a natureza polifásica encontra-se registrada em diferentes domínios, segmentados internamente por zonas de cisalhamento de natureza dúctil-rúptil a dúctil (Ruiz *et al.*, 2006). Ruiz (2005) sugere a separação em cinco domínios, os quais foram definidos com base em dados geocronológicos e geoquímicos. Segundo o referido autor o SW do Cráton Amazônico é subdivido nos domínios Cachoeirinha, Jaurú, Rio Alegre, Santa Bárbara e Paraguá (Figura 1).

Figura 1 - Divisão tectônica do Cráton Amazônico (Ruiz, 2005).

O Domínio Rio Alegre, definido originariamente como uma zona de sutura, foi posteriormente designado como Terreno Rio Alegre (Saes, 1999 e Geraldes, 2000) e Orógeno Rio Alegre. Segundo esses autores, o limite oeste desse terreno é marcado pelo contato com o batólito granítico Santa Helena. Ruiz (2005) e Almeida *et al.* (2006) consideram que o limite oeste é definido por zona de cisalhamento dúctil, com geração de milonitos e ultramilonitos cujos indicadores cinemáticos mostram um movimento normal de topo para SW, alçando o batólito Santa Helena (Domínio Jauru) em relação ao conjunto metavulcano-sedimentar (Domínio Rio Alegre).

O Domínio Jauru (Figura 1) compreende o Terreno Santa Helena e parte do Terreno Jaurú de Saes (1999) e Alto Jaurú de Geraldes *et al.* (2001). A oeste limita-se com os domínios Rio Alegre e Paragua, no primeiro caso, o contato se faz por zonas de cisalhamentos dúcteis normais, notadamente a zona de cisalhamento Piratininga. No segundo caso, sedimentos holocênicos do Pantanal do Guaporé, recobrem o limite com o Domínio Paragua, impedindo sua caracterização.

O limite leste, com o Domínio Cachoeirinha, é tentativamente posicionado na Zona de Cisalhamento Pitas, um conjunto de faixas miloníticas, subverticais, implantadas em gnaisses cinza bandados.

Convém destacar que o Lineamento Indiavaí-Lucialva, admitido como limite entre os Terrenos Jauru e Santa Helena (*sensu* Saes, 1999), configura importante zona de cisalhamento regional, mas não se trata de um limite de terrenos, como indicado por dados de campo e geocronológicos (Ruiz, 2005).

Com o objetivo de estudar a trama deformacional nos segmentos milonitizados dos domínios Rio Alegre e Jaurú foram selecionadas duas áreas sob influência de zonas de cisalhamento regionais (Figura 2). A seguir, serão analisadas as duas áreas separadamente.

A. Pólos do bandamento metamórfico S
n.B. Lineação de estiramento mineral.

Figura 2 - Mapa geológico regional onde são mostradas às duas áreas estudadas. Em detalhe as zonas de cisalhamento Piratininga e Indiavai-Lucialva. As medidas estruturais de foliação e lineação são apresentadas em diagramas de igual área (projeção inferior).

DOMÍNIO DA ZONA DE CISALHAMENTO PIRATININGA

Na área de influência da zona de cisalhamento Piratininga (Figura 2), compreendida em grande parte por rochas granitóides do batólito Santa Helena, a foliação impressa nessas rochas é de natureza tectônica. Os vários afloramentos são marcados pelo desenvolvimento de uma foliação de alto ângulo e uma lineação mineral associada. Essa foliação é progressivamente desenvolvida no corpo granítico sendo principalmente observada ao longo de perfis realizados do centro do batólito granítico para a sua porção periférica, quando essas rochas gradam para ortognáisses bandados de composição granítica a granodiotítica. Localmente, os gnaisses são mais micáceos passando a apresentar um aspecto de ultramilonito com foliação sinuosa. No entanto, essas rochas são irregularmente distribuídas e os afloramentos pouco freqüentes.

Em geral, os gnaisses mostram injeções de diques aplíticos paralelos ao bandamento. Esses diques são bem estirados, normalmente exibindo uma foliação interna concordante com o bandamento dos gnaisses. Essas observações são compatíveis com uma interpretação de que os veios foram intrudidos no corpo granítico anterior a deformação principal que afetou todo o conjunto. Medidas da atitude da foliação e do *plunge* da lineação mineral, nos gnaisses e xistos na borda do batólito granítico, são mostrado na Figura 2. A foliação mostra mergulhos em torno de 70-80 graus para NW e SE, estando claramente discordando com a orientação geral da zona de cisalhamento Piratininga. A lineação mineral mostra valores que variam de quase horizontais a valores próximos a 80 graus, dispersa em torno de um grande círculo médio mergulhando para NW, NE e SE. Essa configuração sugere deformação da lineação em eventos sucessivos, extensivos a região fora da área mapeada. Provavelmente associado a deformação dos sedimentos do Grupo Aguapeí.

Os indicadores cinemáticos (pofiroclastos com caudas de recristalização assimétricas), quando observados em planos perpendiculares a foliação e paralelos a lineação mineral, indicam topo para N-NW independente do sentido de mergulho da foliação.

Figura 3 – Eixo c de quartzo em diagrama de igual área. A linha horizontal é o plano de foliação paralelo a lineação. Os eixos X, Y e Z estão representados nos diagramas na extremidade da linha horizontal, no centro e na vertical, respectivamente. Contornos construídos em curvas de 1, 2, 3 e 4%. O número de grãos medidos, na ordem alfabética dos diagramas, foram 104, 165, 203, 165, 189, 201 e 108 medições.

EIXO C DE QUARTZO

Foram selecionadas 7 amostras de gnáisses milonitizados para medidas de eixo c de quartzo (Figura 3). As amostras foram escolhidas com base no tamanho dos grãos minerais, bem desenvolvida foliação e lineação mineral e conter mais de 30% em quartzo. Os eixos c de quartzo foram medidos em seções de rochas obtidas em cortes perpendiculares a foliação e paralelos a lineação mineral. Para a medição foi utilizado um estágio universal de 4 eixos montado em um microscópio petrográfico. As medidas foram convertidas para a notação clar e lançadas no Stereonet.

Com exceção dos diagramas 3F e 3G, que mostram uma perceptível assimetria com relação ao plano da foliação, todos os outros mostram uma clara simetria ortorrômbica, sugerindo deformação coaxial imposta (Lister e Williams, 1979). No diagrama C as guirlandas são do tipo I, caracterizadas por pequenos círculos em torno de Z. Em A, B, D e E os diagramas são transitórios entre guirlandas do tipo I e máximos pontuais. Em C o ângulo apical, definido pelas duas guirlandas centradas em Y, mede aproximadamente 80°. Esse valor angular sugere uma deformação finita plana na qual o basal <a> foi o sistema ativado durante a deformação (Lister, 1981; Lister e Dornsiepen, 1982).

Os diagramas F e G foram obtidos em dois afloramentos de ultramilonitos. Os dois diagramas mostram o desenvolvimento de máximos assimétricos, com a predominância de guirlandas simples, transitórios entre os tipos I e II. Nesses diagramas, a assimetria das guirlandas indica sentido de movimento de topo para SW. No diagrama F há uma tendência para a concentração de um máximo principal próximo a X. Uma interpretação da variação no padrão de eixo *c* de quartzo pode ser atribuída ao aumento da vorticidade, associado ao aumento da intensidade de deformação (Schmid, 1994), com possível contribuição romboedro <a>.

DOMÍNIO DA ZONA DE CISALHAMENTO INDIAVAÍ-LUCIALVA

A zona de cisalhamento Indiavaí-Lucialva (ZCIL) é formada por uma seqüência de rochas intensamente deformadas, notadamente ortognáisses com lentes de quartzitos, situada no extremo NE do batólito Santa Helena (Figura 2). A idade de formação dessa zona de cisalhamento (Ruiz, 2005) é atribuída como sendo a mesma do evento Aguapeí (900 Ma). Ruiz *et al.* (2007) sugerem que essa zona de cisalhamento representa o estágio extensional final da orogênese Aguapeí. Portanto, o lineamento Indiavaí-Lucialva configura uma importante zona de cisalhamento regional, mas parece não se tratar de um limite de terrenos.

Na área estudada a ZCIL afetou a borda NE do batólito Santa Helena (Figura 2), gerando um bandamento metamórfico S_n que progressivamente passa para gnáisses com foliação S_m , ostentando, em ambos os casos, uma bem desenvolvida lineação de estiramento mineral. O bandamento S_n mergulha 75-80 graus para NE e E-NE (Figura 2). Em alguns afloramentos essa foliação ocorre dobrada e/ou rotacionada devido ao efeito da superposição pela foliação, demonstrando ser o bandamento mais antigo. A rotação da foliação Sn na área é facilmente percebida pela dispersão dos pólos de S_n (Figura 2).

A foliação nos milonítica é caracterizada por agregados quartzo-feldspáticos alongados imersos em uma matriz densamente recristalizada. A observação em planos normais à foliação e aos agregados mostra que esses apresentam seções aproximadamente circulares, ou estruturas de pseudo lápis (Ramsay e Huber, 1983). Tais estruturas caracterizam essas rochas como tectonitos do tipo L-S, cuja *fabric* é composta por elementos lineares e planares arranjados espacialmente. Em seções perpendiculares a foliação e paralelas a lineação estiramento mineral (XZ) foi possível observar indicadores cinemáticos e determinar o sentido de movimentos na zona. Os principais indicadores cinemáticos presentes nesses milonitcos são porfiroclastos de feldspatos (plagioclásios e K-feldspatos), os quais desenvolveram caudas de recristalização assimétricas indicando movimento normal de cisalhamento, ou extensional. A foliação mergulha em alto ângulo para NE com lineação de estiramento do tipo *down dip*, indicando que a principal direção de movimento dos blocos ocorreu sub-perpendicurmente a direção do plano médio de foliação. O protólito desses milonitos são possíveis fácies do batólito Santa Helena de composição sieno-mozogranítica a granítica.

Lentes de quartzitos ocorrem "encaixados" nos milonitos, os quais são distribuídos descontinuamente na área. A sua origem ainda é incerta mas a presença de pegmatitos, intrusivos no batólito e às vezes levemente foliado, constitui-se como um provável protólito dessas lentes. As lentes de quartzito estão limitados as porções mais internas da ZCIL, portanto, marcando as regiões mais intensamente deformadas. Composicionalmente, são quartzitos tectônicos, xistosos e com uma lineação de estiramento mineral bem marcada pela disposição subparalela de cristais de muscovita.

EIXO C DE QUARTZO

Para a medida da textura de eixo c de quartzo foram selecionadas amostras do ortognáisse, do ortognáisse milonítico, e do quartzito.

Como já descrito anteriormente, as medidas do eixo *c* foram obtidas em um Estágio Universal (estágio-U) Leitz montado sobre um microscópico petrográfico. Para o ortognáisse a distribuição do eixo *c* de quartzo é constituída por pontos de máximos simétricos em relação ao plano da foliação (Figura 4). Essa distribuição indica que a deformação foi dominantemente coaxial nos ortognáisses. A formação de um submáximo, na periferia do círculo primitivo, próximo a X, sugere uma transição para um regime não coaxial. A não coaxialidade da deformação finita é observada pelo padrão de eixo *c* de quartzo medido no gnaisse milonitizado. A intensificação da não coaxialidade é mais evidenciada no quartzito, onde a assimetria é definida por dois máximos próximos ao paralelismo com a lineação de estiramento (Figuras 4 e 5). Isso indica que a deformação não coaxial foi acompanhada por aumento na intensidade de deformação (Schmid, 1994). Nesses dois diagramas a concentração de máximos ocorre em torno de X. A ocorrência de máximo no traço da foliação é atribuída a alguma atividade do prisma <c> e/ou <c>+ <a> (Fueten, 1992; Mainprice *et al.*, 1986; Okudaira *et al.*, 1995).

A ativação do prisma $\langle c \rangle$ ocorre apenas em elevadas temperaturas de deformação, equivalente ao metamorfismo de fácies anfibolito superior a granulito (Mainprice *et al.*, 1986). A microestrutura dos quartzitos e sua textura de eixo *c* associada, sugerem que durante a instalação da deformação não coaxial e o desenvolvimento da ZCIL, na borda NE do batólito Santa Helena, temperaturas da ordem de $> 550^{\circ}$ C foram alcançadas. (Figura 5). Portanto, condições diferentes daquelas associadas a instalação da zona de cisalhamento Piratininga, na porção oeste.

Figura 4 – Diagramas de eixo c de quartzo. Projeção inferior em diagrama de igual área. Máximos de 1,
2, 3 e 4% em um total de 115, 175 e 210 grãos medidos, respectivamente, ortognáisse, gnáisse milonitizado e quartzito.

Figura 5 – Fotomicrografia de uma seção delgada de quartzito mostrando o alongamento preferencial dos grãos de quartzo, E-NE e W-NW. A textura de eixo *c* de quartzo medida na lâmina é apresentada pelo diagrama no canto esquerdo superior. O traço do alongamento dos grãos são paralelos ao plano de foliação marcado pela linha no diagrama

CONCLUSÕES

Medidas de eixo c de quartzo são necessárias quando se pretende avaliar o sentido de cisalhamento, a geometria da deformação finita, e, principalmente, a ativação de sistemas de deslizamento (slip systems). A textura de eixo c de quartzo permitiu reconstituir a história deformacional das duas zonas de cisalhamento, avaliando as condições de deformação atuantes durante as suas instalações.

A zona de cisalhamento Piratininga foi instalada sob condições de mais baixa temperatura, equivalente aos fácies xisto verde. A análise da textura de eixo *c* mostrou que a deformação apresenta um forte componente coaxial e extensional. Um dos efeitos dessas condições possivelmente tenha sido a de favorecer a formação de depósitos auríferos, os quais são mais preferíveis em condições típicas de transição de fácies xisto verde.

A ZCIL é uma zona de cisalhamento eminentemente extensiva encaixada em rochas do batólito Santa Helena. Os milonitos analisados mostram forte deformação dúctil com o desenvolvimento de uma foliação e lineação de estiramento mineral bem marcantes. Em escala de grãos, essas rochas apresentam feições microestruturais que denotam ampla recristalização dinâmica por migração de limites de grãos.

A deformação foi também mais intensa, resultando em padrões de eixo c mais assimétricos.

É sugerido que a recristalização do quartzito tenha ocorrido sob condições equivalente ao regime 2 de *dislocation creep*. Análise da textura indica que a ativação do prisma [c] foi preferida sob elevada temperatura de deformação, em torno de 550-600°C. Portanto, sob condições de mais elevada temperatura que a zona de cisalhamento Piratininga.

REFERÊNCIAS

Almeida H. L.; Ruiz, A S; Vollbrecht, A. (2006). In: Sonja Phillipp, Bernd Leiss, Axel Vollbrecht, David Tanner, Agust Gudmundsson. *Tektonik, Struktur und kristalligeologie*. Goettingen: Niedersächsische Staatsund Universitätsbibliothek, p. 3-6.

Blumenfeld P., Mainprice D., Bouchez J. L. (1986). Tectonophysics, 127: 97-115

Bouchez J. L. e Pêcher A. (1981). Tectonophysics, 78: 23-50

Drury M. R. e Urai J. L. (1990). Tectonophysics, 172: 235-253

Drury M. R. e Humphreys F. J. (1985). Physics of the Earth and Planetary Interiors, 40: 208-222

Fueten F. (1992). J. Struc. Geol., 14: 775-789

Herwegh M., Handy M. R., Heilbronner R. (1997). Tectonophysics, 280: 83-106

Hirth G. e Tullis J. (1992). Journal of Structural Geology, 14: 145-159

Kruhl J. H. (1996). Journal of Metamorphic Geology, 14: 581-589

Lister G. S. e Hobbs B. E. (1980). J. Struc. Geol., 2: 355-370

Mainprice D., Bouchez J. L., Blumenfeld P., Tubia J. M. (1986). Geology., 14: 819-822

Okudaira T., Takeshita T., Hara I., Ando J. (1995). Tectonophysis, 250: 31-46

Ramsay J. G. e Huber M. I. (1983). Academic Press, London, vol. 1, pp. 303

Ruiz A. S. (2005). Tese de Doutorado. IGCE-Unesp, 250 p.

Ruiz A. S.; Simões S. A.; Barbosa, L.; Godoy M.; Matos J. B.; Sousa M. Z. (2007). XI Simp. Nac. Est. Tect., 116-118.

Stipp M., Stünitz H., Heilbronner R., Schmid S. (2003). J. Struc. Geol., 24: 1861-1884

Schmid S. M. (1994). In: H. J. Bunge, S. Siegesmund, K. Weber (eds.) textures of geological material. DGM, Oberursel, pp.: 279-301.